Genetically engineered foot-and-mouth disease viruses with poly(C) tracts of two nucleotides are virulent in mice.

نویسندگان

  • E Rieder
  • T Bunch
  • F Brown
  • P W Mason
چکیده

To determine the role of the poly(C) tract found at the 5' end of the genome of foot-and-mouth disease virus, synthetic RNAs (in vitro transcripts) with poly(C) tracts of different lengths have been produced and evaluated. RNAs with poly(C) tracts of 35, 25, 16, 6, or 2 residues displayed similar specific infectivities in baby hamster kidney (BHK) cells. Viruses recovered from cells transfected with in vitro transcripts containing 6 to 35 Cs had properties similar to those of the wild-type virus in cell culture, and poly(C) tracts present in the synthetic RNA-derived viruses ranged from 75 to 140 bases in length. Viruses recovered from transcripts containing only two Cs showed very different properties. Specifically, viruses grew to much lower levels in cell culture and maintained a poly(C) tract of only two residues. The pool of viruses harvested from cells transfected with the synthetic C2 RNA also contained a small amount of a virus with a 42-base deletion in the region of the poly(C) tract, which appeared to have arisen by recombination. Taken together, these data suggest that recombination provides the mechanism of poly(C) elongation and that viruses with poly(C) tracts over 75 bases in length have a selective advantage in cell culture. Interestingly, all of the in vitro transcript-derived viruses [including viruses with poly(C) tracts of only two residues] were equally virulent in mice, indicating that poly(C) tract length has no effect on virulence in this animal model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetic determinants of altered virulence of Taiwanese foot-and-mouth disease virus.

In 1997, a devastating outbreak of foot-and-mouth disease (FMD) in Taiwan was caused by a serotype O virus (referred to here as OTai) with atypical virulence. It produced high morbidity and mortality in swine but did not affect cattle. We have defined the genetic basis of the species specificity of OTai by evaluating the properties of genetically engineered chimeric viruses created from OTai an...

متن کامل

Receptor binding site-deleted foot-and-mouth disease (FMD) virus protects cattle from FMD.

Binding of foot-and-mouth disease virus (FMDV) to cells requires an arginine-glycine-aspartic acid (RGD) sequence in the capsid protein VP1. We have genetically engineered an FMDV in which these three amino acids have been deleted, producing a virus particle which is unable to bind to cells. Cattle vaccinated with these receptor binding site-deleted virions were protected from disease when chal...

متن کامل

Mengovirus and encephalomyocarditis virus poly(C) tract lengths can affect virus growth in murine cell culture.

Many virulent aphthoviruses and cardioviruses have long homopolymeric poly(C) tracts in the 5' untranslated regions of their RNA genomes. A panel of genetically engineered mengo-type cardioviruses has been described which contain a variety of different poly(C) tract lengths. Studies of these viruses have shown the poly(C) tract to be dispensable for growth in HeLa cells, although the relative m...

متن کامل

Engineering viable foot-and-mouth disease viruses with increased thermostability as a step in the development of improved vaccines.

We have rationally engineered foot-and-mouth disease virus to increase its stability against thermal dissociation into subunits without disrupting the many biological functions needed for its infectivity. Amino acid side chains located near the capsid intersubunit interfaces and either predicted or found to be dispensable for infectivity were replaced by others that could establish new disulfid...

متن کامل

Heterogeneity of the polyribocytidylic acid tract in aphthovirus: biochemical and biological studies of viruses carrying polyribocytidylic acid tracts of different lengths.

In this paper we report a study of a sample of foot-and-mouth disease virus carrying two polyribocytidylic acid [poly(C)] tracts of different lengths. By plaque purification in tissue culture, we isolated two populations of particles, one carrying the long poly(C) tract and the other carrying only the short homopolymer. The fingerprints of both viruses were indistinguishable from each other and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of virology

دوره 67 9  شماره 

صفحات  -

تاریخ انتشار 1993